Squire Jagmaster Gets a Total Make-over And Then Some! Part One of Four

Matt has many dreams. One of them was to have an offset-waist guitar with a Tune-O-Matic bridge and a Bigsby. And while we’re at it, a fresh set of pickups. And then, of course, a kill switch, because, why not? And there is Even More after that! This sounds crazy enough for The Unbrokenstring Crew to immediately roll up our sleeves!

.

And, yes, Matt is a star!

.

.

We have some added confidence that we can go crazy with this project because this is not the most expensive guitar in the world. But, as we shall see, it is a surprisingly good base for the modifications in mind.

Starting with the pickups, these factory humbuckers will be changed out.

.

Each factory pickup measures almost the same resistance, but we labelled them separately for the benefit of future generations.

.

A pair of P-94s grace the pickguard.

.

The Gibson P-94s look dazzling on this guitar! Matt really hit a home run in the esthetics department. And they sound awesome, as we will later find out.

.

A quick test of the wiring is performed by gently tapping each pickup with something metallic while the little Orange amp turns my taps into sound.

.

While we’re here, the pickup selector switch is tightened with this serrated nut compression tool.

.

Step One is complete. This guitar looks pretty snazzy!

In the next installment of this saga, The Unbrokenstring Crew will take a deep dive into serious Bod Mod and install a Tume-O-Matic bridge and Bigsby tremolo on this instrument. Tune In next week for Episode Two!

Thanks for reading all the way to the bottom!

CONTACT – David Latchaw EE
281-636-8626

A Little TLC for an Orange Amplification 15 Watt Head

This unit came in to the shop with intermittent signal and power issues. First, we need to get this unit functioning consistently. Only then is it possible to find other issues that need attention. Could The Unbrokenstring Crew have a look at it and bring it back to its full potential?

This all-tube unit looks too new to have any problems at all. Sure enough, it did not power-on as it should. Let’s take a look at this unit before we open it up.

.

Many features are packed into this little guy. And I love the color!

.

Bringing out the Send and Return functions adds versatility when using effects. And there are plenty of jacks for connecting speaker cabinets.

.

The Name/Rank/Serial Number picture helps when ownership changes. The Unbrokenstring Blog has already identified one piece of stolen gear.

.

Remove-able IEC line cords are always nice. But how do we set the AC line voltage? I see an ink mark, but no switch.

.

When we pull the case off, we are greeted with a pleasant sight of all tubes (and solid state rectifiers under the chassis.)

.

Cruising around the sides, we find something of interest!

.

Here is the switch to set the AC mains voltage. D’oh!

.

Other than the fact that the tube sockets are soldered to the PC board, there is very little to dislike regarding the design and layout of this unit.

.

The power supply section appears to be in good condition. The solid state rectifiers are to the left and up from the green PASSED sticker.

.

From left to right, we see the ON/OFF switch and the power level setting switch, the pilot light, volume control, and the bass tone control.

.

Picking up again from the bass tone control, we see the MID tone control, treble tone control, and the GAIN knob.

.

Next to the GAIN control is the input jack. These jacks switch signals when no plug is inserted, so we need to check the operation of all these jack switches once the unit is operational.

.

The power fuse looks good, if not a little saggy. We should check it electrically.

.

Well, what do you know? This fuse has been storing up a lot of Ohms; in fact, over two million ohms (which is more than my meter will measure.)

.

This spade connector has come loose. It could account for this unit not working, as well as the fact that the fuse had open-circuited and begun accumulating all those Ohms…

.

These switching jacks are the source of the intermittent audio. They are all cleaned with DeOxIt and cycled several times to renew them.

.

After a new fuse and after cleaning the switching jacks and reattaching the loose wire, this unit is 100%.

Thanks for reading all the way to the end!

CONTACT – David Latchaw EE
281-636-8626

Cool Sunn Practice Combo Amp Blows a Fuse

The fuse blew in this Sunn Stinger 20, but the new fuse blew as well. Then, it quit working for good. Cool Under Fire wanted this combo amp back in action. Could The Unbrokenstring Crew sort it all out?

    

Our patient still has that cool Sunn vibe after all these years, even if it doesn’t work.  That name badge is recognized by all.

    

Getting up close and personal to the front panel, we see an input jack and three tone controls.

 

Independent Gain and Volume controls show that this unit means business!  The mute button and headphone jack give this amp a family-friendly advantage over other inexpensive practice amps.

  

As is found on many guitar amps, the cabinet is sealed with a closed back.

 

Oh no!  The sticker says “DO NOT OPEN.”  What are we going to do?

 

We open it, of course.  How long has it been since you’ve seen a loudspeaker with a square magnet?

 

Obviously this is a four-ohm loudspeaker.

 

The steel chassis has circuit boards for the preamp functions, just behind the controls, and power supply and audio power amplifier at the rear of the unit.  Nothing appears out of order here.  No, wait!  Look here!

 

This wire has come un-crimped from the terminal, seen in the background.

 

We can just open this terminal up a bit, re-insert the wire, and solder it in place.  But the question remains:  Could this have been the reason that the unit blew fuses before it finally quit permanently?  I don’t think so.

 

While we’re waiting on a copy of the Sunn Service Bulletins for this amp to come via email, let’s take a minute to clean this unit up.

 

The controls hold the front edge of the circuit board in place, and a couple of screws hold the back edge steady.

 

The headphone jack is entirely isolated from the chassis of the unit.  Even though the chassis is wired to the green wire safety ground in the AC cord, taking measures such as this makes the UL Certification easier.

 

The input jack is shielded from interference with this metal bracket.  This kind of additional shielding is almost never done on inexpensive amps…  this Sunn is definitely a Cut Above!

 

The switches and controls are easily cleaned now that they are easily accessible, as shown here.  The Unbrokenstring Crew NEVER forces cleaning fluid around the shaft of the potentiometers as a cleaning procedure, because dirt and old lubricant is forced inside the control.  It cannot end well.  Sorry, StewMac.

 

With all the hardware out of the way, it is a trivial matter to clean up the face plate.  Gibson Guitar Pump Polish is pressed into service for this step.

 

Reassembly also involves tightening the woodwork.  Over time, wood shrinks (even in humid South Texas) so most amplifier cabinets will develop buzzes and rattles as they age.

 

Maybe if we work quickly, the “Do Not Remove” police will not catch up to us and put us in jail.

 

The Service Literature arrived!  It states that the next-higher ampacity of fuse should be used in this unit;  There was an error at the factory wherein units in this serial number range had an inadequate fuse installed!  This little amp has run for hours with no issues!

Thanks for reading all the way to the end!

CONTACT – David Latchaw EE
281-636-8626

Shure 55S Microphone Rescued from the Dumpster

Dr. Shoen’s girlfriend at the time found this microphone in a dumpster behind a church. What did he really find, and could it be more than a theatrical prop onstage? The Unbrokenstring Crew goes to work!

 

Shure Brothers built this iconic microphone at the factory in Evanston, Illinois in the years between 1951 and 1961. The art deco design is recognized around the world as “The Elvis Microphone.”

 

The 55S is a smaller version of the Model 55 Shure Brothers microphone first produced in 1939.

 

Unidyne is a term coined to reflect that a single (unitary) microphone diaphragm is employed. The moving coil technique employed to convert sound pressure into electricity makes this a dynamic microphone; Thus we have the word “Unidyne.”

 

Units with the ON/OFF switch were produced after 1961

 

The silk wind screen is badly deteriorated. The microphone makes a loud ‘clunk’ noise when it is moved. We need to look inside.

 

Four screws allow the halves of the microphone body to be separated.

 

Inside the microphone, we see the element at the top and a multiple-impedance transformer on the bottom.

 

Two screws hold a bracket that retains a foam vibration dampener in place, which has long since deteriorated and crumbled away. This is the source of our ‘thunk.’

 

Two more foam vibration dampeners hold the bottom of the element. They are also deteriorated. More ‘thunk.’

 

The microphone element lifts out easily once the top bracket is removed.

 

Some of the foam isolation dampeners remain on the bottom two microphone element supports. These are end-of-life and no longer available from Shure.

 

It is easy to see places where the silk wind screen is missing.

 

The matching transformer is mounted along with a couple of boxes that retain the now-deteriorated foam vibration dampeners.

 

Two screws hold these parts in place.

 

We see the back side of the impedance selector switch in the background, and some set screws in the foreground. What do these do?

 

The bottom set screw is supposed to hold this spring sheath around the green and orange wires in place.

 

The top set screw holds the impedance selector switch in place.

 

We need to take everything out.

 

The spring sheath runs through the base of the microphone and protects the wires as the microphone is flexed at the joint.

 

Inside the top of the microphone case we find this sticker, which records the patent numbers employed in the design of this microphone.

 

The pivot between the microphone and base needs to come apart for cleaning and adjustment.

 

This screw can be adjusted to set the stiffness of the microphone head relative to the base.

 

Graphite washers ride between the moving parts for lubrication.

 

A dent in the body of the microphone needs to be removed. Yes, I’m using my luthier’s hammer to pound out the dent.

 

Can you see where the dent was?

 

The old silk wind screen was glued inside the case of the microphone.

 

Acetone will dissolve the old glue. It will also dissolve silk, turning this cleanup step into a blue sticky ‘hot mess.’

 

But a little patience and perseverance yields a clean microphone case.

 

Warning – Skeleton Shot! I’ll betcha that you have never seen a microphone like this.

 

We found some sheer blue silk fabric for the wind screen. This brighter blue is not historically correct, as ‘Victoria Blue’ (Pantone 2756) was specified by the factory. However, this blue matches the Shure nameplate and badge.

 

This is a test.

 

Fabric is glued to the top and bottom as well as sides of the front half of the microphone enclosure. We will now fabricate a soft pillow to allow the fabric to be ‘blocked’ into place as the glue dries in the front half of the microphone enclosure.

 

This soft pillow will be fabricated from Oomoo. Yes, the silicon mold-making resin will be just the thing.

 

Equal parts by volume are mixed.

 

The mix is poured into the front half of the microphone. A plastic sheet protects the microphone shell from the casting material. The Oomoo silicone mold material won’t hurt the microphone shell, but I don’t want to risk contaminating the microphone shell and possibly compromising the glue adhesion later.

 

And here is our pillow!

 

We don’t want the pillow to deform the fabric, so these high points are removed by hand with an Exacto knife.

 

Here is the finished pillow inside the microphone shell.

 

And here is the fabric, glued and blocked into the microphone shell.

 

Time to reassemble. The moving joint is reassembled and the cable from the base to the enclosure is reinstalled.

 

The spring around the cable is held in place with the set screw, as we discovered earlier. This is a nice view of the fabric in the back shell of the microphone. This piece is just a flat rectangular sheet stretched across the back, so it’s easy to glue in place by hand without a block.

 

The joint is back together. No lubrication is necessary as the graphite washers are doing their job.

 

A smooth, firm grip at the joint is established before installing the lock nut.

 

This is what the spring protecting the wires is supposed to look like.

 

The microphone element works, but I couldn’t resist taking a look at the technology behind US Patent 2,237,298. The hemispherical shell on the back of the element helps establish the cardioid pickup pattern of the element.

 

I fabricated new foam vibration dampeners, which are installed in three places. The matching transformer assembly goes back where it belongs.

 

The microphone element is reinstalled where it belongs and wired in. This is now a working microphone. The covering on the microphone element is actually the same material used for vintage silk stockings a.k.a. nylons.

 

A set of four matching screws are fitted and finished to hold the two halves of the microphone enclosure together.

 

Pretty spiff!

 

Thanks for reading all the way to the end!

CONTACT – David Latchaw EE
281-636-8626

Kustom Defender 15H Amp Head Gets an Output Transformer and Tubes

Mark’s future SIL picked up this little guy from the ‘friend’ he loaned it to, but it was mute when he got it back. Could the Unbrokenstring Crew make it audible again?

 

This unit is a very simple guitar amplifier, with two power settings.

 

The rear panel has some good functionality, including a DI out and a loudspeaker impedance selector.

 

And, of course, we have the Name, Rank, and Serial number, plus a couple of QC stamps!

 

The output transformer is on the left and the power transformer is on the right. The input or high voltage side of the output transformer is shorted, reading about 6 ohms. This should be about 10,000 ohms.

 

The date code on the output transformer says that this part is not old enough to fail. I speculate that it was made China-Cheap.

 

These specs are really useful, because the new output transformer can be sourced so that these ratings and connections can be matched.

 

And here is our new part. It is a little bigger, so it will be mounted at a right angle to where the old transformer was mounted.

 

The new transformer is bolted in. The wire color on the new transformer matches the wire color on the old one. This is too easy!

 

A drop of LokTite thread locker is added to the bolts to keep everything where it belongs.

 

New tubes are necessary as the old ones had cooked and were not anywhere near matched. This amp uses a novel circuit to split the phase of the audio signal driving the power tubes, so these tubes need to be matched.

 

The amp is working and has passed all the final tests! And it doesn’t sound bad!

 

The four hour burn-in starts after the top cover is installed. For a simple amplifier circuit, it does a good job of fighting against the silence.

Oh, and don’t loan your stuff out.

 

Thanks for reading all the way to the end!

CONTACT – David Latchaw EE
281-636-8626

Gibson ES125 Tune-Up

Dr. John has collected this beautiful ES-125 (a Gibson Electric Spanish guitar with an MSRP of $125 back when it was produced) but it sounded as if it were underwater. Could the Unbrokenstring Crew toss it a life saver?

 

This instrument is in collectable condition, with all original hardware. The finish is finely-checked as you would expect a seventy-year-old musical instrument to be. A new hand-wound pickup was included in the instrument case, if the original one was defective and could not be easily fixed.

 

Years of oxidation and skin oil had made the neck sticky, particularly when the humidity is high (which is all the time in Houston.)

 

The sticky finish ends at the head stock, which implies that the finish is OK but the skin oil is the culprit.

 

Here, fine polishing compound is mixed with Dr. Duck’s Axe Wax to rub out the finish and remove the oxidation.

 

Next, we will look under the pick guard to investigate where the underwater sound is coming from.

 

This pick guard is shaped in such a way that it holds all the controls, and only a hole for the ground wire to the bridge and a slot to clear the pickup is needed in the sound board to electrify this instrument.

 

The ground wire to the strings appears to be a piece of lamp cord. The solder joint around the ground wire did not alloy to the ground wire between the pots, but slides up and down the wire.

 

This ceramic cap is the tone cap. It bleeds off high frequency to ground under the control of the tone pot.

 

This tone cap is marked 0.02uF at 50 volts.

 

On the capacitor tester, the value is correct.

 

However, the dielectric is very leaky, which would probably change things in the tone circuit for the worse. This is probably where the ‘underwater’ sound comes from!

 

Some high quality film capacitors are retrieved from stock.

 

These are the same value, 0.02uF, but are rated at 400v in case the guitarist plugs the instrument into a wall socket. At least the capacitor will survive. The player, not so much…

 

Dr. John lives about seventy miles away. As each change was made, a sound file of the instrument was emailed to him to monitor progress.

 

A free copy of ProTools First and Ableton Live came with the interface, which will amazingly run pretty well on this old rack-mount controller PC that I have on the bench.

 

John decided that the new pickup didn’t add anything to this fine old instrument, so it remains in its original condition as of seventy years ago (with a new tone cap, of course.)

Thanks for reading all the way to the end!

CONTACT – David Latchaw EE
281-636-8626

Marshall JCM900 Tune Up

This wonderful old Marshall JCM900 lives in a recording studio. It was due for a set of tubes and a million-mile checkup. Could the Unbrokenstring Crew refresh this head and resolve the tiny issues that had arisen over the years?

 

In simple terms, this head has two channels that share a common tone stack, effects loop, and reverb tank. The amount of reverb, as well as the gain and volume, are independently adjustable.

 

Name, rank, and serial number, please.

 

The effects loop is accessible from the back. This unit is recording-friendly, with outputs for ‘wet’ and ‘dry’ signals.

 

The Business End. This amp can be switched to 50 or 100 watt output power.

 

Two fuses are used in the high voltage plate supply for this amp, which is a nice touch and will add something to the story later. IEC mains power socket and a line fuse rounds out the rear panel.

 

These power tubes have pushed billions and billions of electrons around, and some of those electrons have interacted with the inert gas inside the glass envelope. Do you see the frowning face in the upper insulator? The brown scorch mark is his beard.

 

These great tubes have delivered a long service life and are now just about worn out.

 

Interestingly, Marshall delivered these heads with 5881 tubes, a military 6L6. Later 6L6GCs dissipate more power and take higher voltages. You can read Internet posts regarding the battles between Marshall in England and American importers; the latter changed the tubes on new amps to 6L6GCs because they believed the 5881s would not last through the warranty period.

 

And here we have the reverb tank.

 

A walk through the bottom of the unit shows us the output transformer. The red and black leads to to the reverb tank.

 

On the left is the preamp circuit board containing the input jack, tone controls, and signal switching. The tube sockets are discretely wired, and on the right is another circuit board handling the effects loop jacks.

 

More views of the preamp board on the left and the output jacks on the right. Tube sockets are in the middle.

 

At the lower right side of the output circuit board is the power supply power resistors, rectifiers, and fuses

 

The large blue items are the filter capacitors. These are in excellent condition and will not be replaced today.

 

The power transformer and power switches are mounted directly to the chassis.

 

This blue control sets the idling current (bias) for all four tubes. The current splits thru R28 and R29 to manage a pair of tubes each, part of the 50W/100W power control circuit.

 

The Unbrokenstring Crew are big fans of DeoxIt products. Here, we have sprayed a little D100 into the cap, and then soaked a pipe cleaner in the solution.

 

The pipe cleaner works well to clean and recondition each individual octal tube socket contact.

 

We will also wipe off the pins on the bottom of each tube.

 

So with the tubes installed and operating into an 8 ohm resistive load, we set the idle current for one pair of tubes. But the two sides don’t match.

 

Here, I’m using my good Fluke bench meter to confirm that one pair of tubes is idling at 50 milliamps, while the other pair is idling at about 41 milliamps or so. Both meters are in good agreement with the values measured, but I’ll stay with my good Fluke to investigate the situation.

 

Plate current causes heat to be dissipated in each tube. The V1 and V4 tubes are about 114 degrees C. while idling at about 41 milliamps.

 

The V2 and V3 pair are a little warmer. These tubes are idling at 50 milliamps. The temperature difference confirms the validity of the different idling currents… but why are they different? They share one transformer winding. We paid big money for matched tubes (which, when swapped around, make no difference…) More work!

 

Remember seeing separate fuses for plate current on the back of the amplifier? Checking voltage drops in the entire plate circuit, we see that this fuse drops about 0.2 volts across it more than the other fuse. Does that tiny voltage drop make any difference?

 

The fuse for the V1/V4 pair of tubes measures over half an ohm (meter zeroed for test lead resistance.)

 

This is the other fuse, for the V2/V3 pair plate circuit.

 

This fuse measures a tiny bit smaller resistance from end to end. Does this actually account for the higher current?

 

Sure enough, those voltage drops and differences in resistance accounts for about 10mA difference in plate current. New Fuses, Please!

 

While we’re at it, we will clean the fuse caps with DeoxIt, just as we did with the tube pins.

 

And the fuse holders will be similarly cleaned. (Hint – these pipe cleaners are perfect for cleaning other hardware besides your tobacco pipe.)

 

This line filter capacitor is scorched by a power resistor that was pushed up against it, perhaps a result of rough handling during shipping.

 

Components that are used on AC power require all sorts of safety certifications, which this part has.

 

I could probably leave this part in the amplifier, but film capacitors are cheap and if this were my amplifier, I would want it taken care of in a proper manner.

 

So here is the new line capacitor. The power resistor will be moved away from this guy when it is installed.

 

The filter capacitors in the bias circuit were also replaced, while troubleshooting the plate current imbalance.

 

Of course, replacing those parts requires access to the bottom of the circuit board.

 

While we have the circuit board up and out of the way, we can catch a glimpse of the discrete-wired tube sockets. This is a much better way to wire vacuum tube sockets, rather than solder them to a printed circuit board IMHO, because the tube sockets expand and contract much more than the circuit board material, whereas the discrete wire can just flex with the expansion and contraction.

 

This little bit of trimmed wire was stuck on the bottom of the circuit board. This will be no issue unless it comes loose, which it might do just as you are ready to go on stage and start the set.

 

Now this amp is running like a clock. The waveform represents the voltage across eight ohms driven with 110 watts, with a 440Hz sine wave injected into the input jack.

 

The chassis goes back into the case. I removed the power tubes for this step because I didn’t want to risk breaking anything in case I got stupid. The red and black cables to to the reverb tank.

 

Everything is checking out!

 

The sheet metal rear panel is much easier to align when the unit is face-down on the bench.

 

Zenith televisions were advertised with the slogan “The quality goes in before the name goes on!” After a four hour burn-in, the sticker is affixed on the output transformer side of the rear panel.

Thanks for reading all the way to the end!

CONTACT – David Latchaw EE

281-636-8626

New Luna Ukulele Is Bent Out Of Shape

Sophie’s aunt wanted to do something to further her niece’s continuing education and eventual career in music therapy.  This nice Luna ukulele was a thoughtful gift.  Unfortunately, there were many dead notes.  Could the Unbrokenstring Crew bring those notes back to life?

Inside the bag is a ukulele, some picks, a tuner, and an instructional DVD!

 

The words for “Peace” in forty-four languages are engraved into the soundboard of this instrument. All you hippies will recognize the peace sign in the sound hole.

 

Sure enough, there are several notes on the fret board, near the nut, that are muted out.

 

Name, rank, and serial number, please.

 

I am not sure what this number is…

 

The fret rocker shows a very tiny difference in fret height, when checking between adjacent frets.

 

However, a straight edge reveals that the neck is back-bowed. The tape just keeps the machinist’s scale upright so I could take the picture.

 

I recorded the string height for all posterity. This is not far from right for a ukulele. Some authorities say it’s too high, others say too low. Whatever.

 

The fret wire height is not adequate to support a fret level job. The back bow is just too much. Yes, the back bow is more than 0.040 inch on each end of the fret board!

 

My guess is, the fret board will need to be reshaped. Here, I’m recording the width of the fret wires.

 

Concert ukuleles are tuned A – E – C – G, with the bottom string, sometimes called String 1, the highest pitch. This G string diameter is about 0.022 inch.

 

The C string is about 0.030 inch.

 

The E string is the largest, measuring about 0.035 inch.

 

The drone string is tuned to A above the G. This string measures about 0.025 inch.

 

Interestingly, the fret board has about a 20 inch radius, while the nut and saddle are absolutely flat. The Luna Guitars Web site specs this instrument with a flat fret board, too. I’ve decided to re-flatten the entire fret board. The nut must come off. Here, I’m cutting the finish so that the nut can be removed cleanly.

 

I love whacking musical instruments with a hammer. I find it strangely satisfying.

 

The saddle slips out of its slot. You can see that there is no radius in the saddle at all.

 

The Smoking Gun. There is not enough string tension in the world to straighten this neck. It also has a twist. It doesn’t matter that this instrument has no truss rod because it wouldn’t help.

 

Visually, we can see the wavy fret board and a clear radius. How did this instrument leave the factory?

 

Let’s get the tuners out of the way.

 

I made this fret remover from an inexpensive set of end nippers from Harbor Freight.

 

These frets over the body are easily removed.

 

Before the woodworking begins in earnest, let’s tape everything off.

 

Some cardboard protects the entire soundboard.

 

The strategy is to flatten the fret board on the belt sander.

 

This little belt sanding station came from Harbor Freight.

 

Some of the safety covers were removed to enable the instrument to set flat on the sanding belt. Do not attempt this at home, kids!

 

The eighty-grit sanding belt begins to make an impression on the fret board. This fret board appears to be rosewood, but the Web site says that this instrument is all mahogany. Dunno about that.

 

With a twist that bad, we can easily inspect our progress.

 

Now I am wondering what I got myself into.

 

Back to it! Many thanks to my wife Glenda for taking these pictures.

 

Serious amounts of sanding dust are produced, so we are outside today.

 

Another check shows that we are not there yet.

 

The sanding belt is doing its work.

 

What is it going to take to get this straight?

 

Sanding dust is going everywhere. No scorch marks yet!

 

I am pleased that the fret markers are still intact.

 

Very light pressure is used now to clean up the surface.

 

Now we’re getting somewhere.

 

Continuing on, producing sanding dust like crazy.

 

Now I’m thinking that I need to be careful not to go too far.

 

Most of the fret board is flat. There is still some fall-away over the body of the ukulele, which is OK with me.

 

Last few strokes on the belt.

 

The twist is gone and most of the fret board is absolutely flat. I thought that the noise of sanding would drive the cats away, but we see Jack on the bottom step in the lower left corner of this picture.

 

The luthier’s scraper shows that the fret board is flat.

 

The sharp scraper is an excellent tool to finish raw wood.

 

The fret slots at fret six and seven are almost gone. I really don’t think that this fret board is mahogany.

 

Fret slot ten is almost gone.

 

One end of the fret slots over the body IS gone. Yes, it was that bad.

 

My fret saw was set to 0.054 inch, which is the depth of the new fret tangs.

 

Every slot was taken down to about 0.055 inch.

 

These short sections of small fret wire are perfect for this instrument.

 

Each fret was installed, and nipped to length after installation. The long ends were the pieces at the end of the short strips that weren’t long enough to fill another fret. They get nipped off separately.

 

After nipping, this file embedded in a block of nylon files the fret ends 90 degrees to the fret board. Moving the file to another slot allows the fret crowns to be filed to a 60 degree angle to the fret board. I love eBay!

 

Checking for flatness, these frets are ABSOLUTELY flat, which is not surprising.

 

The fret ends are shaped and burnished by hand, and the fret wires are lightly sanded. As with a classical guitar, the frets are not polished, but finely sanded in the same direction as that of the string.

 

The original nut was reused, and re-slotted to restore the original 0.060 inch string height. The nut was just right as it was. The fret board was oiled. New strings complete the job. All the notes are present and accounted for!

Thanks for reading all the way to the end!

CONTACT – David Latchaw EE

281-636-8626

Fender Princeton Reverb Amp is Snatched from the Jaws of Hurricane Harvey

Partially submerged in the flood waters of Hurricane Harvey, this combo amp was rescued when the waters receded.  Could the Unbrokenstring Crew turn this insurance claim into a working unit again?

 At first glance, this unit is in pretty good shape.  Fortunately, the flood waters around this unit were not salty, but fresh rain water.  The grille cloth was not badly stained, and much of the exterior grime was superficial.

 

Not much damage had occurred to the cabinet; some warpage was beginning to appear in the bottom baffle.  The interior was still wet.  This implied that, if the drying-out process could be controlled, no further damage to the cabinet would be sustained.

 

Can you see some rust on the screws?

 

This side has some mold.

 

The bottom Tolex has some mildew beginning to form.  Look at the rust beginning to form on hardware in the foreground.

 

The handle was beginning to rust.  This could be managed.

 

The handle and the Tolex is cleaned and reconditioned with this, which also gives us a clean lemon scent!

 

This is the top of the reverb tank.  Yes, beads of water, still on the exterior of the tank.

 

The previous owner had padded the top of the tank with gray foam, and the bottom with cardboard.  The cardboard was soaking wet.

 

Reverb tanks are inexpensive, so we will just order a new one.

 

The paper cone of the loudspeaker was intact.  This loudspeaker will be replaced by the new owner.

 

Moisture inside the amp chassis has swelled the turret board.

 

Water has reacted with the solder flux, creating a brown crust around all the solder joints.  The components still look pretty good, although they cannot be trusted now.

 

Corrosion on the tube socket contacts testifies to the presence of liquid water here.  Note also that the zinc plating on the once-shiny chassis is turning cloudy.  This tells us that the zinc is doing its job as a corrosion-inhibiting plating, sacrificing itself to protect the steel underneath.

 

The cabinet hardware is washed in Rust Biox to clear away the rust.  This chemical is available in Europe, but of course, The Unbrokenstring Crew is just cool enough to have this material here in the U.S.

 

The nickel plating has very little iron to rust;  This deposit is probably mud.

 

All the hardware is cleaned up.  The Tolex is cleaned and conditioned with the furniture polish.  The cabinet looks good as new!

 

A new tube chart is pasted inside the cabinet where the original one was located.

 

For the electronics, a hand-wired chassis from the estate of Darrell Shifflett of Texas Amplification is pressed into service.  The Unbrokenstring was truly fortunate to buy the remaining inventory of Texas Amplification.  This chassis was part of the inventory.  Look at those shiny new jacks!

 

The knobs are, of course correct.  This is a clone of a Fender Blackface Princeton Reverb, not built in California but rather in Houston, Texas.

 

Darrell was a master of the details.  Even the front panel is Correct for this unit.

 

As a testament to Darrell, let’s just take a look at his workmanship.

 

The wiring and component placement is meticulous.

 

If original components were available, such as the carbon composition resistors, he used them.  Modern flame-proof components are used where an improvement in reliability and safety without sacrificing sonic performance justified the upgrade.

Even the wire is period-correct, fabric-covered was used for the point-to-point wiring, just like the originals.

 

A bias check for EACH output tube is added to the rear panel.  Millivolts measured from red to black correspond to milliamps of plate current.

 

The jacks and controls are name-brand and not the cheap stuff.

 

But just look at that fresh brass sheet used for the ground plane under the controls.  The original brass probably didn’t look this good in Fender units when they were new!

 

The underside of this amp is just a voyage on the Good Ship Eye Candy!

 

The electronic tremolo circuit is duplicated on this turret board.  Not sure why this turret board is warped, but it is electrically 100%.

 

Speaking of turret boards, just look at the meticulous care used to mount each component and route the leads.  Even the bias potentiometer is nicely placed.

 

Comparing this layout against the original Fender drawings is just breath-taking.

 

I’m really jazzed about how the fabric-covered wire is carefully routed around the tube sockets.

 

We needed a new rectifier tube for this amp.

 

Darrell used Mercury Magnetics for all the transformers on this chassis…  the best you can get!

 

With the power on, all the voltages are correct.

 

The new reverb tank arrived today.

 

The bag protecting the reverb tank is dry and ready to be used again.

 

These straps hold the reverb tank bag in place in the bottom of the amplifier.

 

The ON/OFF switch works as it should.  Since the AC cord is a modern three-wire unit, the original ‘GROUND’ switch is wired as a STANDBY/ON switch.

 

This unit is ready to go back to the new owner, who will install the new loudspeaker.  Pretty nice unit for having been under water!

Thanks for reading all the way to the end!

CONTACT – David Latchaw EE
281-636-8626

A Journey To Planet Unobtanium – Yamaha 50-112 Combo Guitar Amp

A secret weapon of many an acoustic and jazz artist, this mid-seventies line of Yamaha solid state amps were well-regarded among those few who knew about them. This like-new specimen had been suffering from a strange ailment, then went mute. Could the Unbrokenstring Crew revive this unit?

On the exterior, this amp was in very good shape considering that it had been built forty years ago!

 

Starting our tour, the power switch combines the ON/OFF function with the AC polarity reversal switch seen on many tube amps of the same period.

 

The high and low level input jacks are typical for the era.

 

The tone stack includes a ‘bright’ function, a precursor of the ‘presence’ control seen on amplifiers today.

 

The presence of the reverb function demonstrates that this is an early unit.  Many of the later ones did not have a reverb tank at all.  The distortion function is an attempt to add ‘fuzz’ and is nothing like the metal/shred distortion heard today.

 

A few attempts had been made over the years to clean the controls.  Unfortunately, the lube spread onto the front panel around the controls.  Yuck!

 

The open cabinet is clean and functional.

 

We have the usual name-rank-serial number information here.

 

We have two unmarked jacks.  What in the world?  But we see foot switch jacks which are not out of the ordinary.

 

Both the AC power into the unit and the DC power to the final amplifier block are externally fused.

 

And, we have a QC sticker!

 

Removing one of the rear baffles reveals the solid state amp and gives us access to the chassis.

 

Obviously the original loudspeaker, the response graph demonstrates the heritage of this unit to the high fidelity world that Yamaha dominated in the 1970s.

 

This ground lead connected the chassis of the amplifier to the frame of the loudspeaker.

 

With the chassis out of the cabinet, we see a reverb tank in the foreground, a power transformer to the right, big capacitors in the center, and a mono-block amplifier to the left rear.

 

This strain relief for the AC power cord is really over-the-top!

 

The black, finned heat sink is the foundation upon which the power amplifier is built.

 

This large electrolytic filters the DC power for the amplifier, which is nominally 80vdc.

 

This electrolytic capacitor is in series between the amplifier output and the loudspeaker.  This amplifier’s circuit topography shifts the DC operating point of the amplifier to one-half of the DC power supply voltage, effectively forming a class AB amplifier using a single power supply.  This capacitor passes the audio current to the loudspeaker while protecting the loudspeaker from any DC current.

 

Underneath the chassis we find this fused, low-voltage power supply which supplies floating DC voltages for the circuitry.

 

Remember those two unmarked jacks on the rear panel?  Someone added them so that a quarter inch cable can be connected to another quarter inch cable.  Yes, this is a home-made 1/4″ mono to 1/4″ mono jack adapter/coupler.

 

Here is the bottom side of the two large electrolytic capacitors we saw up top.

 

More fuses and bypass capacitors are visible here, in vinyl tubing, to shroud the terminals from touching something they shouldn’t.

 

The ON/OFF/ON switch is seen to the right and the Power ON indicator lamp, with limiting resistor, are seen here.

 

Look at the thick steel shield that keeps any signals running around the inside of the amplifier away from the input jacks!

 

While we’re here, let’s service the unit.  Jacks are cleaned with De-Ox-It.

 

This circuit board handles all the signals surrounding the front-panel potentiometers.

 

These controls will be properly cleaned and re-lubricated.  And we can clean that nasty front panel while we’re here!

 

After removing two large bolts, the power amp assembly lifts off.

 

The six pin connector handles power in, signal in, and amplified signal out duties.

 

Inside this assembly, we see all the components for a transistor-based solid state power amplifier.

 

A pair of these transistors handle the power amp duties.  The screen separates everything from the collector of the transistors, which are at +80vdc potential.

 

This screw under the little bump in the sheet metal holds a temperature-compensating diode array in close contact with the heat sink.  This diode array provides temperature compensation for the transistorized amplifier.

 

Note that this module is stamped 50W/8 ohms.  The Japanese think of everything!

 

With the cover removed, we can see the inner details.

 

These low-level driver transistors are pure unobtanium, which means that if they are bad, there is no modern direct replacement.

 

Fortunately, all of those low-level driver transistors appear to be OK.  The curve tracer indicates that this is a PNP device.

 

This is another bit of pure unobtanium.  Three silicon diodes with special forward voltage characteristics over temperature are housed in this component.

 

This diode array appears to be functional for now.  These are HIGHLY SOUGHT AFTER by techs who rebuild those 1970’s era Kenwood and Pioneer stereo receivers.

 

Every component will be checked, including the power transistors.  Replacements are available for these, if we need them.

 

Almost every component will be removed from the circuit board and verified against the schematic and the markings on the device.

 

This capacitor was more than 30% low in capacitance, and will be replaced.  (No, the leads are not touching.)

 

With the power amp assembly back together, we can perform some initial setup of voltages and levels.

 

One of those two big power transistors with the copper-colored tabs is intermittent.  Can we find a matched complimentary pair to replace them both?

 

Yes, after some research, an adequate replacement was ordered.  Whew!

 

Here they are, those black boxy devices in the center of the picture.  I marked the collector pin locations with a C and the base pin locations with a B on the circuit board so I could get the new parts in the right place.

 

OK, now we’re cooking.  The center yellow trace is a signal called C.VOLT on the schematic, and represents the voltage value of the midpoint of the DC power supply.

 

Over a few hours, the value of C.VOLT changed, creating bad distortion.  Look closely at the green capacitor at the top of the picture.  Can you see something ‘wet’ on the circuit board under it?

 

That ‘wet’ looking stuff is similar to contact cement.  The Japanese used this stuff extensively in the 1970s to secure electronic components so that they did not come loose from the circuit boards when shipped to the United States and elsewhere.  Over time, this ‘stuff’ becomes conductive, which will upset circuit operation.  Many a Japanese-built bit of electronics, including televisions and Ham radios, were taken out of operation by this stuff.

 

The site where the green capacitor goes has been cleaned.  This needs to be repeated for any ‘stuff’ remaining in this unit.

 

Here is the C.VOLT test point.  The crusty brown stuff is solder flux, which will also be removed.

I uploaded a video of the working amplifier to YouTube, which then blocked the video and hit me with a take-down notice about a minute after I uploaded it.  The audio content of the video was copyrighted, and I was caught.  Don’t you just love YouTube/Google/Facebook?

Thanks for reading all the way to the end!

CONTACT – David Latchaw EE
281-636-8626