Peavey Stereo Chorus 212 Head Stuck In Mono

The owner of this amp was so anxious to get it fixed, he removed the chassis from this Peavey Stereo Chorus 212 combo and even helped load it!  The amp plays, but only one stereo channel is operational.  Can the Unbrokenstring Crew help?

A quick look of the front panel shows the inputs and the normal (clean) channel controls.

Did you catch the missing knob?  The Unbrokenstring Crew will find a replacement, which is no small thing because these are no longer available new and are only available from spares or salvaged from a non-working unit.

This amp uses a digital signal processing (DSP) module to make all this audio magic.

Interestingly, the DSP module creates two unique audio signals (stereo) from a single mono input.

The ground lift switch is on the front panel, which is a nice touch from many other designs.

This dual OPAMP is non-functional.  However, this is not the root cause of the missing stereo signal.

This is the DSP module in this amplifier.  We have only one audio stream as an output from this device.

A piece of cardboard serves an an insulator so that the bottom of the DSP assembly can be probed.

Here is where the DSP processor outputs both audio as a stream of ONEs and ZEROs.  We are OK here!

This chip processes the two DSP streams in a manner similar to a successive approximation analog-to-digital converter.

The bit streams are split using an analog switch.  Here is the output of the switch assigned to the working channel.

And this is the output of the switch on the non-working channel.  Time to change the switch!

Desoldering today is performed with a traditional iron, rosin flux, and copper braid.  This keeps solder balls to a minimum.

The circuit board is cleared of excess solder and flux.

The new MUX chip is available through the usual sources.

With the tweezers, the new MUX chip is oriented properly on the circuit board pads.  See the tweezers?

After soldering, the workmanship is inspected with this hand-held microscope.  The high-powered white illuminator is on the left, and the black cylinder next to the big IC chips is the optical microscope itself.

Any remaining solder flux is removed with alcohol.  The rag gives the dissolved mess somewhere to go.

Both channels are operating at full power.  The knob is coming from an eBay auction.  When it gets here this head is ready to return to the eager customer!

Thanks for reading all the way to the end!

CONTACT – David Latchaw EE
281-636-8626

Bugera V22 Infinium Combo Amp Repair

This beautiful combo amp excels in all categories except one…  no audio out.  Could the Unbrokenstring Crew help?

Taking a walk-around, the rear panel tells us that this amp was built in Macao, PRC.

Good corporate branding…

The TRIODE/PENTODE switch is advertised as a ‘half-power/full-power’ switch.  The LEDs labelled “Tube Life Monitoring” light up when the fuse in the plate circuit open, due to an internal short in the tubes.

Looking down from the end shows a handsome front panel with the Very Cool chicken head knobs.

The top view of the chassis shows us another good instance of strong corporate branding. I do like the protective cage over the vacuum tubes.

Here we get a good look at the bottom of the main circuit board.  I am not a big fan of soldering tube sockets straight into a circuit board, but this seems to work here.

Most everything on this side of the circuit board appears to be OK.

I was documenting the location and orientation of these cables, in case we needed to further disassemble the unit.

These solder joints appear to be cold.  We have found our intermittent ‘no sound’ cause!

Every other solder joint is removed, fluxed, then resoldered.

Ah, that’s better!

Ironic that just a couple of cold solder joints would bring this wonderful combo amp to its knees. This guy is 100% now!

Thanks for reading all the way to the end!

CONTACT – David Latchaw EE
281-636-8626

Wireless Shure SM58 Battery Leaked

This microphone was part of the estate of an amateur journalist. As she moved into treatment and into hospice, there were other concerns besides removing the batteries from unused equipment. Could the Unbrokenstring Crew revive this unit and make it usable again?

This microphone is a basic SM58 capsule coupled to a battery-operated VHF FM transmitter.

These are often seen in many performance venues as well as in worship, news-gathering, and business settings.

 

The 9v battery has leaked.  We will need to disassemble the unit to clean up the mess.

 

These VHF units are on frequency allocations that are shared with other services and may be subject to interference.  However, these units work well if you are fortunate enough to be in a part of the country where interference is low.

 

The microphone capsule is built into the head of the microphone, which unscrews from the electronics.  Connections between the capsule and the electronics are reliable regardless of how many turns are necessary to tighten the threaded bodies together.

 

The gold fingers touch those rings seen in the previous picture.

 

This inside snap ring keeps the electronics inside the housing.

 

Before we remove the electronics,we need to get the switch actuators out of the case.  The cover removes easily enough.

 

The switch actuators come straight out.

 

This is looking good!

 

This is the complete analog FM transmitter.

 

Working with the battery contacts is much easier now that the case is out of the way.

 

Reassembly is the reverse of disassembly.  Wow, that’s profound…

 

These big tweezers are all I need to get the inside snap ring back in place.

 

Reassembled, the new battery is installed and we have a green light!

 

The receiver indicates that an FM carrier is present.

 

We have an intermittent problem with audio out of the microphone.  We need to look at the capsule.

 

I guess we’ve screwed the pooch by now.

 

The wires are cracked where they emerge from the solder joints.  These will be reworked.

 

This brass adapter goes between the capsule and the rest of the housing.

 

We are back together again!

Thanks for reading all the way to the end!

CONTACT – David Latchaw EE
281-636-8626

Professional Advice for Those Caring For Flood-Damaged Guitars

Roy Bowen and Scott Leedy of RS Guitarworks in Winchester, Kentucky had it in their hearts to reach out to Houston area musicians, documenting their experiences gained while working with flood-damaged guitars during the big flood in Nashville back in 2010.  The Unbrokenstring Crew is honored and blessed to be able to publish this document for your edification.  This supplements my previous post, which was general in nature and included electronics.  To wit:

 

Guitar Flood Triage

Below is a list of steps that we developed while restoring guitars from the Nashville flood and Hurricane Sandy.  The following steps should be taken as soon as possible.

 

  • First remove strings.

 

  • If truss rod is not removable, loosen truss rod ½ turn, add a couple of drops of penetrating oil on the threads then tighten ¼ turn.  On vintage Fender or Gibson guitars where the truss rod can be removed, remove truss rod lug. Oil the threads then re-install snug but not tight.  You want to make sure threads are lubed so the truss rod does not rust in place.

 

  • Remove all parts from body including hardware and electronics.  Wood will try to move and solid items like screws & tuners will not let it move.  This can cause cracking of the wood, as well as cause rust staining in the wood.

 

  • On bolt on instruments remove the neck.

 

  • Take all hardware and place it in bags filled with uncooked rice and leave it until you are ready to re-assemble.

 

  • All electronic parts such as pots and switches should be cleaned with a quality electronics cleaner and then stored in uncooked rice as well.

 

  • Air-drying of the wood is best after parts have been hand dried inside and out.  Keeping guitars in a small room with a dehumidifier can also help.

 

  • Do not try to use any cleaners on the finish or hardware of the guitar until it is properly dried and stabilized.

 

  • Do not try to tape down loose binding or wood coming un-glued as it may damage fragile finish loosened by water

 

  • Get the guitar to a qualified repairman as soon as possible.

 

Be sure to visit http://www.rsguitarworks.net to tell them THANKS and to check out their restoration work with other water-damaged guitars.

Thanks for reading all the way to the end!

CONTACT – David Latchaw EE
281-636-8626

Some Advice for Musicians Whose Gear Was Water-Damaged by Hurricane Harvey

Shortly after the Shuttle Explosion in 1986, the computers onboard the Challenger orbiter were retrieved from the floor of the Atlantic Ocean.  Each ‘set’ of boxes was sent to a different NASA Center for analysis.  One set came into the IBM Federal Systems lab in Clear Lake, Texas, where we dried, partially disassembled, and reassembled the hardware in hopes of recovering any clues regarding the accident.  I was the sub-contract manager at IBM at the time and was tasked with engineering support for the effort, including electrical test, micro-soldering, cable assembly, and such.  I am proud to report that the unit came back to life after two weeks of salt water immersion, and the data in the memory core was intact up to the point that vehicle power was lost; That information contributed greatly to the accident timeline.

So I want to weigh in on some strategies for musicians who found that their gear was water-damaged in Hurricane Harvey, which is still affecting Coastal Texas as I write this.  Let’s get going!

  1. Don’t turn anything on to see if it still works.  Odds are, it won’t.  And it won’t because you turned it on, dumbass.
  2. Unplug everything.  Your power is probably off anyway, but it never hurts to be sure.
  3. Remove ALL the batteries.  This includes tuners of all kinds, even the ones built into an acoustic guitar, guitar pedals and effect units, portable recorders, laptops, microphones, everything.  Same process as when your cell phone falls in the toilet.
  4. For all stringed instruments, slack the strings.  You don’t have to remove them, but just remove the tension.  Loosen the pegs on your violins/violas/cellos/basses to slack the strings; don’t bother with the fine tuners.
  5. For instruments with truss rods in the neck (guitars, basses, etc.) slack the truss rod.  Just a half a turn in the direction of ‘more loose, not more tight’ is the way to go.  For most instruments, that’s counter-clockwise.
  6. Drum heads on banjos and drum kits should be slacked as well, if the shell was wet.
  7. Many woodwinds will be OK if you were treating them with sweet oil on a regular basis.  The case will be in worse shape than the instrument.  Wipe everything with a dry towel and let it air dry for a week or two.  Inspect any pads and remove the reed; the reed will need to be replaced anyway unless you use synthetic reeds.

Now that everything is stable, let’s consider the recovery options.  The challenges we face are as follows:

  • Acoustic instruments made of wood are not damaged by a little water.  A lot of water will swell the wood and stress/break the glue bonds.  The sooner the liquid water is removed from the surface of the wood, the sooner we can begin the process of drying the instrument.  Wipe it down with a dry towel, inside and out.  There are instances of classical guitars stored in a basement in Central Europe that had absorbed TWICE THEIR WEIGHT in water that were successfully dried and returned to play-able condition.
  • Acoustic instruments made of wood ARE damaged by too much drying.  Shrinkage causes the wood to pull away from glue bonds and pull away from itself e.g. crack.  This Peavey neck became over-dried in hot attic:Fortunately, we have (and will continue to have) PLENTY of humidity so a good, slow, open-air drying over the next couple of weeks will cause the least damage to our acoustic instruments.  Resist the urge to pull out the hair dryer!
  • Solid body instruments are, more impervious to liquid water by virtue of the fact that they are usually finished in polyurethane or other rugged finish.  Again, wipe it down with a dry towel.  We’ll come back to work on the controls in a moment.
  • Martin guitars with the composite bodies, and Ovation guitars with their famous ‘bowls’ may be difficult to recover.  The sound board expands and shrinks at a different rate than the rest of the guitar.  Ovation will (upon request and sufficient $$) replace a wet top with a new one.  The Music Factory in Pearland has done this with a few of their new Ovations following the last hurricane.  I have not spoken with Martin but my guess is, you might have to call them and discuss the options.  Many of the composite/laminate guitars are under $500 which limits the range of repair options.

The areas of concern with our electronics fall into these categories: (1) cabinets and grille  (2) loudspeaker cones  (3) controls and switches.

Note that I did not say anything about the electronics themselves.  Electronic assemblies built after, say, about 1990, are mass produced by a process that uses water as a cleaning solvent.  This is called ‘aqueous cleanup’ and is almost ubiquitous in all electronic assembly shops around the world.  Your electronics will fare fare better in the flood than you think, particularly if we don’t energize them while wet.

  1. Let’s start on the cabinets and grilles.  Remove the grille and dry what you can with a towel.  The frame is almost always wood, and the fabric is almost always a synthetic.  The wood should be allowed to dry slowly over the next couple of weeks.  Do not apply any heat.  The frame may still warp a little, but we will deal with that when we reassemble the cab.
  2. Wipe all water from the cabinet, paying particular attention to the inside and bottom of the cabinet.  Remove the reverb tank, if it is present, and set aside.  Again, with the cabinet, a slow dry may be all it needs.  If the cabinet is made from particle board, you will see swelling which may spoil the appearance of the unit.  The particle board will never be as strong as it was before it got wet.  If your cabinet is particle board, you might convince yourself that Harvey has given you permission for an upgrade to a pine or plywood cabinet.
  3. Carefully remove any remaining liquid water from loudspeaker cones.  Let everything dry out for a week or two.  Then GENTLY push the cone evenly forward and back and listen for any rubbing or scratching noises.  If you don’t hear any noise (called ‘motor noise’) you may be OK.  Unfortunately, some magnets have a high concentration of metallic iron, which will rust (and swell) in the presence of moisture.  If the rusting is bad enough, the loudspeaker needs to be reconed or replaced.

Let’s take a look at the electronics.  The controls and switches on guitars and the controls and switches on amplifiers are treated in a similar manner.  Circuit boards and wiring harnesses are not hard to clean up if you are handy.  If you are comfortable disassembling your amp head or accessory, then Read On.  If not, there are many shops (not just mine) that are on Facebook that are competent to perform these repairs.  I am detailing these procedures so that the do-it-yourself-er can have some confidence to proceed, and also so that the non-do-it-yourself-er can speak competently with your chosen tech.

  • Compressed air is your friend.  The air blast will remove any liquid water present.  After disassembling your gear, get compressed air underneath components, connectors, transformers, anywhere there is a place where water can reside.  Those little cans of ‘electronic dusters’ are cool but expensive.  Pull out the air compressor.  Pull the bottom plate off your pedals to gain access to anywhere water may be lurking.  Remove those pick guards and blow everything dry.  Open up those battery boxes (you did remove the batteries, didn’t you?)  Dry everything!
  • Switches need a rinse and then lubrication.  I use ‘Blue Shower’ as a rinse, which is for cleaning television tuners.  There are other products that work as well.  Google “CAIG” read up, and go shopping at Fry’s for some of the CAIG products they carry.  Start with the CAIG F5 stuff as a rinse, then the CAIG GOLD stuff as a protector lubricant.  I use the CAIG GOLD product as well as some MIL-SPEC stuff (because I Am Cooler than you and can get MIL-SPEC stuff and you can’t.)
  • Hit the input and output jacks with a little CAIG GOLD on a cotton swab.  This is just good routine maintenance, and is particularly vital now that your instrument may have been wet.
  • For controls that were working fine before the flood, I would just use a shot of the CAIG Fader Lube (same aisle at Fry’s) as a water displacer and a lubricant.  Don’t try to rinse good controls because you may displace the factory lubricant and put it where it may create noise on the resistive element.  Keep It Simple.
  • Cables may be problematic.  My advice would be to toss the wet ones and get new ones.  My reasoning is this: Cables are often the weak link in any setup, even when new.  You know this.  Water will deteriorate cables because it will penetrate each end of the cable.  Copper and its alloys react readily in the presence of water and contamination (dirt from flood waters, for example.)  Also, the connector itself may be compromised by corrosion, as will be the solder joints or compression welds performed when the cable was new.  It will only get worse.  Toss the cables.  Just do it.  Life is too short.
  • For pictures of what I do with controls, check my previous post on https://www.unbrokenstring.com/noisy-controls-in-an-swr-red-head-bass-combo/
  • Most guitar pickups are encapsulated with wax or epoxy.  While the pick guard is off, blow out and dry what you can reach.  There may be some very fine wires exposed where they may be damaged, so don’t go crazy with the towel.
  • Reverb tanks have small transformer wound with small wire, like guitar pickups. Also, the springs are fairly delicate. Do what you can to dry them out before rust and oxidation set in. If they need to be replaced, reverb tanks may be purchased on-line for $30-$40 or so.
  • The CAIG Fader Lube is a very good lubricant for tuning machines.  While you’re at it, give them a shot of lube, directing it in such a way that it can enter the tuning machine.  Rinse.  Repeat.

UNDER NO CIRCUMSTANCES USE WD-40 ON YOUR GEAR.

 

WD-40 is good for your wet car ignition, but it has fish oil in it, which is just plain nasty considering that this is the 21st century and you can get modern products for your equipment.  Some people swear by WD-40, and I use it on lawn equipment and tools.  When people use it on electronics and musical instruments, I swear AT them.

Now that you are Poseidon and can command water to go away, here’s another tip.  If your flood water was muddy or contaminated, you can use clean water at anytime on most electronics.  This includes switches, controls, circuit boards, and all the stuff we’ve mentioned so far.  Your electronics were built in a factory that used water to clean the final product.  You can do this, because you know how to remove water.  And you are Poseidon.

FYI, full disclosure – I don’t own stock in CAIG.  However, their products are Top Drawer and are available at Fry’s in the hard-hit Southeast Houston area where I work and live.  In the Northwest part of town, ACE Electronics has the Blue Shower and equivalent lubricants.  These are the products that are available NOW (er… when the power comes back on and the roads are passable..) and are not vaporware.  Just tryin’ to help.

Again, there are several VERY COMPETENT shops in the Houston area that are willing and able to assist with an attempt to recover water damaged gear.  Check the musician groups on Facebook, and do a search for ‘repair’ before you post anything.  Turns out, some guy posts the same question every week or so, looking for a good repair shop.  And the same answers keep coming up again and again.  Don’t be that guy.  I am booked solid out through the end of September and may not be able to take on your work right away.  If you care to contact me directly, I can discuss some options and recommend some Good People who can get you going again.

Thanks for reading all the way to the end!

CONTACT – David Latchaw EE
281-636-8626